Lecture 2

Part I

Selections -Single If-Stmts Conditions: General vs Specific

Overlapping Conditions in a Single If-Statement

If we have a single if statement, then having this order

if
$$(x \ge 5)$$
 { System.out.println("x >= 5"); }
exse if $(x \ge 0)$ { System.out.println("x >= 0"); }

is different from having this order more genera.

```
if (x \ge 0) System.out.println("x \ge 0"); } 

exse if (x \ge 5) { System.out.println("x \ge 5"); }
```

X>=5

オ>=0

Single If-Stmt with General to Specific Branching Conditions

Lecture 2

Part J

Selections Short-Circuit Effect of && and ||

I means up meed by. Le as long as one operand

means to evaluate a stalse, result is

need to be.

Description of the stalse and the stalse are stalse.

The stalse are stalse are stalse are stalse. Sas long as one operand

To true, result to T.

Short-Circuit Evaluation: Common Errors

```
Test Inputs:

x = 0 y = 10
```

```
division to protect/guard.
```

Short-Circuit Evaluation is not exploited: crash when x == 0

```
if (y/x) / 2 && x != 0) {

/* do something */
} WANN.

else {

/* print error */ }
```

Short-Circuit Evaluation is not exploited: crash when x == 0

Lecture 2

Part K

Selections More Common Errors and Pitfalls

Common Errors: Missing Braces

Confusingly, braces can be omitted if the block contains a single statement.

```
final double PI = 3.1415926;
Scanner input = new Scanner(System.in);
double radius = input.nextDouble();
if (radius >= 0)
System.out.println("Area is " + radius * radius * PI);
```

Your program will *misbehave* when a block is supposed to execute *multiple statements*, but you forget to enclose them within braces.

```
final double PI = 3.1415926;

Scanner input = new Scanner(System.in);
double radius = input.nextDouble();
double area = 0
if (radius >= 10)

Larea = radius * radius * PI;

System.out.println("Area is " + area)

Fix
```

Inputs:

| S = (-3) | Were missing | 100 |

Common Errors: Misplaced Semicolon

Semicolon (;) in Java marks the end of a statement (e.g., assignment, if statement).

If (radius >= 0); { 4 * 4 * T/
area = radius * radius * PI;

System.out.println("Area is " farea;

radius = 4

This program will calculate and output the area even when the input radius is *negative*, why? Fix?

Common Errors: Variable Not Properly Re-Assigned

Common Errors: Ambiguous "else" "danglang" else.

```
if (x >= 0)
if (x > 100) {
    System.out.println("x is larger than 100");

else {
    System.out.println("x is negative");
}
```


Test Inputs:

MARCH TUP.

Common Pitfall: Simplifiable Boolean Expressions

```
boolean isEven;
                           boolean Totren =
if (number % 2 == 0) {
 isEven = true;
                                   number % Z = = 0;
                        The Take Chowen
else {
 isEven = false;
                     if (isEven == false) {
                       System.out.println("Odd Number");
                     else {
                       System.out.println("Even Number");
```

Lecture 3

Part A

Loops for-Loop vs. while-Loop Syntax and Semantics

for-Loop: Syntax and Semantics

```
for (int i = 0; i < 100; i + +)
   System.out.println("Welcome to Java!");
                     initial-action
                                                               i = 0
                        loop-
                                    false
                                                            (i < 100)?
                     continuation-
                      condition?
                      true
                                                              true
                                                      System.out.println(
                     Statement(s)
                                                          "Welcome to Java"):
                     (loop body)
               action-after-each-iteration
```

- Q. How many times is the less body (printly) executed?
- Q. How many times is the loop body (println) executed?

for-Loop: Alternative Syntax

```
for (int(i) = 0; i < 100; i ++) {
   System.out.println("Welcome to Java!");</pre>
```

Printly (T) 5 X

- The "initial-action" is executed only once, so it may be moved right before the for loop.
- The "action-after-each-iteration" is executed repetitively to make progress, so it may be moved to the end of the for loop body.

So the above for-loop may be re-written as:

```
for-Loop: Exercises (1)
   for (int count = 0; count < 100; count ++) {
   System.out.println("Welcome to Java!");</pre>
   for (int count = 1) (count < 201); count += 2)
     System.out.println("Welcome to Java!");
                                                                      Bunt = 21-1
    Q. Are the outputs same or different?
     count | count < 100 | Iteration
                                           count | count < 201 | Iteration
```

```
int count = 0;
for (; count < 100; ) {
   System.out.println("Welcome to Java " + count + "!");
   count ++; /* count = count + 1; */</pre>
```

```
int count = 1;
for (; count <= 100; ) {
    System.out.println("Welcome to Java " + count + "!");
    count ++; /* count = count + 1; */
}</pre>
```

Q. Are the outputs same or different?

for-Loop: Exercises (3)

Compare the behaviour of the following three programs:

```
for (int i = 1; i <= 5; i ++) {
    System.out.print(i); }</pre>
```

Output: 12345

```
int i = 1;
for (; i <= 5;) {
    System.out.print(i);
    i ++; }</pre>
```

23456

Output: 12345

Output: 23456

while-Loop: Syntax and Semantics

```
int count = 0;
while (count < 100) {
   System.out.println("Welcome to Java!");
   count ++; /* count = count + 1; */
}</pre>
```


- Q. How many times is the stsy condition (i < 100) checked?
- Q. How many times is the loop body (println) executed?

while-Loop: Tracing

```
J=(+2),
= 102=(+2 =) (=+00)
```

```
int (j = 3;
while (j < 103) {
    System.out.println("Welcome to Java!");
    j ++; /* j = j + 1; */ }</pre>
```

j	<i>j</i> < 103	Enter/Stay Loop?	Iteration Actions				
.3	3 < 103	True	(1) (I)	print, j ++			
.4	4 < 103	True	. 2	print, j ++			
.5	5 < 103	True	.3	print, j ++			
• • • • • • • • • • • • • • • • • • • •							
102	102 < 103	True	100	print, j ++			
103	103 < 103	False	_	_			

Q. How many times is the stsy condition (i < 100) checked? //
Q. How many times is the loop body (println) executed? /

while-Loop: Exercises (1)

```
int count = 0;
while (count < 100) {
   System.out.println("Welcome to Java!");
   count ++; /* count = count + 1; */
}

int count = 1;
while (count <= 100) {
   System.out.println("Welcome to Java!");
   count ++; /* count = count + 1; */
}</pre>
```

Q. Are the outputs same or different?

count	count < 100	Iteration	count	count <= 100	Iteration

while-Loop: Exercises (2)

```
int count = 0;
while (count < 100) {
    System.out.println("Welcome to Java " + count + "!");
    count ++; /* count = count + 1; */
}</pre>
```

```
int count = 1;
while (count <= 100) {
   System.out.println("Welcome to Java " + count + "!");
   count ++; /* count = count + 1; */
}</pre>
```

Q. Are the outputs same or different?

Lecture 3

Part B

Loops Compound Loops,
for-Loops vs. and while-Loops

Compound Loop: Exercises (1)

```
System.out.println("Enter a radius value:");
double radius input.nextDouble();
while (radius >= 0)
  double area = radius * radius * 3.14;
  System.out.println("Area is " + area);
  System.out.println("Enter a radius value:");
 radius = <u>input.nextDouble(</u>);
System.out.println("Error: negative radius value.");
I reaching this time, we already ext som loop.
```

Test Inputs: radius = -3

Test Inputs:
radius = 2
radius = -3

Test Inputs: radius = 2 radius = 3

Compound Loop: Exercises (2.1)

```
System.out_println("Enter a radius value:");

double radius input.nextDouble();

boolean isNegative = radius < 0;

while (!!sNegative)) {

double area = radius * radius * 3.14;

System.out.println("Area is " + area);

System.out.println("Enter a radius value:");

radius input.nextDouble();

isNegative = radius < 0;

}

System.out.println("Error: negative radius value.");
```

Test Inputs: radius = -3

```
Test Inputs:
radius = 2
radius = -3
```

```
Test Inputs:
radius = 2
radius = 3
```

Compound Loop: Exercises (2.2)

Q. What if we delete the update at Line 9?

```
System.out.println("Enter a radius value:");
   double radius = input.nextDouble();
    boolean isPositive = radius >= 0;
    while (isPositive)
      double area = radius * radius * 3.14;
6
      System.out.println("Area is " + area);
      System.out.println("Enter a radius value:");
      radius = input.nextDouble();
    System.out.println("Error: negative radius value.");
10
```

Test Inputs:
radius = 2
radius = -3

Console

for-Loop vs. while-Loop

```
To convert a while loop to a for loop, leave the initialization and update parts of the for loop empty.
```

```
is equivalent to:

for(; B; {
   /* Actions */
}
```

expressive power equivalent

where *B* is any valid Boolean expression.

To convert a for loop to a while loop, move the initialization part immediately before the while loop and place the update part at the end of the while loop body.

```
for (int i = 0; B; i ++) {
   /* Actions */
}
```

is equivalent to:

```
int i = 0;
while (B) {
   /* Actions */
   i ++;
}
```

where B is any valid Boolean expression.